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A Spectral Time Discretization for Flows with Dominant Periodicity
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An accurate and efficient treatment of periodic and quasi-periodic
flows based on the temporat Fourier decomposition of the Navier—
Stokes equations is suggested. A numerical implementation for a
laminar afterbody wake in a 2D channel is presented. This imple-
mentation is formulated in primitive variables and uses an crdinary
second-order accurate finite volume space discretization combined
with a standard pressure corraction procedure. A multistep time
marching scheme for numerical and physical transients is devel-
oped. For flows with a variable dominant period, a period correction
algorithm is used. The transients characterizing the instability devel-
opmemt are simulated. The numerical results obtained for the
afterbody wake confirm the expectations concerning the efficiency
and high time accuracy of the method. Moreover, the method pro-
vides direct access to quantities difficult to obtain by other methods
such as the envelope and the angular velocity variation of the unsta-
ble mode. & 1995 Academic Press, Inc.

1. INTRODUCTION

A substantial progress in the understanding of the onset of
instabilities in wakes has been achieved thanks to accurate
numerical simulations (f1] and references therein). It appears
that not only in wakes but in most cases of unstable configura-
tions such as parallel flows [2], boundary layers [3], and jets
[4] the onset of the primary instability corresponds to a Hopf
bifurcation [5] accompanied by a transition from a steady to
an unsteady periodic flow. A series of experimental |4, 6, 7]
and numerical investigations [1] have confirmed that the Hopf
bifurcation can be locally described by the Landau model [8].
The Hopf bifurcation is characterized by flow oscillations with
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a slowly varying dominant frequency and by a transient modula-
tion of the oscillation amplitudes. The most relevant features
of the bifurcation are related to the transients, i.e., to the enve-
lope of the oscillations and to the shift of the Strouhal frequency.
Moreover, the latest results show [1, 9] that the spatial structure
of the instability presents a special interest.

Numerical 2D and 3D [10, 11] simulations of laminar wakes
show that the time and space characteristics of the Hopf bifurca-
tion can be, in principle, simulated with a sufficient accuracy
to obtain a good agreement with experimental data. It appears,
however, that especially in 3D serious trade-offs have to be
made as far as the accuracy of computations is concerned due
to the necessity to reduce the computing costs in order to be
able to obtain sufficiently long temporal data. In the case of
2D computations, numerical investigation of such a simple
configuration as two interacting cylinder wakes becomes simply
prohibitive because the time scale of the beatings of the inter-
acting wakes represents several tens of Strouhal periods. The
same situation can be expected in fully 3D configurations,
where there seems to be experimental evidence [12] of the
onset of a secondary Benjamin—Feir-like instability leading,
again, to rather slow beatings. It is easy 1o see that the high
computing costs of simulations of the mentioned flows are
related to the time marching resolution of the Navier—Stokes
equations and to the necessity to recompute anew every new
period even if the overall variation of the flow field from one
period to the other is small. The stability constraints and time
accuracy of the current solvers usually require large numbers
of time steps per one basic (Strouhal) period (hundreds to
thousands of time steps) just to reproduce almost the same
quasi periodic behaviour many times. (Typically 50 to 100
periods are required to obtain an accurate analysis of the tran-
sients of the Bénard—von Kdrman instability [1].)

Recently, a significant number of papers with numerical top-
ics have been focussed on simulation of unsteady laminar flows.
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The principal objectives of these papers is the improvement of
the efficiency and accuracy of the spatial discretization: low
order finite volume methods [13-13], high order finite differ-
ence [16, 17], spectral element methods [1, 11], or spectral
methods [18). However, the time discretization always consists
in time marching techniques of varying order [19, 20] pre-
senting for periodic and quasi periodic flows, the inconvenients
exposed above.

A qualitatively different situation occurs in turbulent flows
with dominant periodicity. This periodicity may be either forced
or self-generated as is the case of turbulent wakes. It is well
known that the von Kdrman vortex street is very stable and a
practically constant dominant Strouhal frequency is present
until very high Reynolds numbers. Such turbulent flows are
incompatible with the concept of time averaging in turbulence
modelling and represent thus a real challenge [21]. It can be
seen that the modelling problem arises from the necessity to
separate the periodic oscillations (representing, this time, slow
time scales) from the turbulent fluctuations and to introduce an
aliernative averaging concept.

In the present paper we propose a numerical method promis-
ing to provide a basis for solving the mentioned problems. Our
considerations and test cases will concern mainly the simulation
of slow time-scales in laminar wakes. In Section 2 we provide
the theoretical basis of the method. In Section 3 we present the
numerical implementation, The numerical results and compari-
sons with the standard time marching approach will be provided
in Section 4.

2. THEORETICAL BACKGROUND

2.1. Governing Equations

We consider the Navier—Stokes equations for incompressible
and viscous flows in the velocity—pressure formulation,

Jv

rgrﬁ+vVv—vV2v+Vp=0 {n

Vv

=0, (2}

where v denotes the velocity vector and p is the pressure,
These equations have to be completed by boundary and initial
conditions, which will be discussed in the next section. In order
to simplify the presentation of our method let us remark that
most methods of resolution of the set of Eqgs. (1) and (2) written
in the velocity—pressure formulation take account of the conti-
nuity equation (2) via some pressure correction method. The
pressure correction amounts to replacing the continuity equation
(2) by the pressure equation:

av; du;
=0 3)

dx; dx;
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which is used at each time-step to obtain the correct pressure
field. Let us symbolize the resolution of the pressure Poisson
equation as

]au,-%

Bxi- an ’

p=—(V¥- @

Equation (4} shows that the pressure term in Eq. (1) contributes
to the nonlinearities of the equations. In this paper, we shall
be mostly concerned with the aspects of the time dicretization
of the Navier—Stokes equations. We shall therefore simplify
the notation by introducing the (time-independent) nonlinear
operator

F(v)= — Vv + B(v,v), 5
where B is the bilinear operator
_L 0w 3 o 0w
Blv.w) = ¢ ax;  ox, (V9 dx, duy ©)

We thus arrive at the following formulation of Eqs. (1) and (2)

Y 4 Ry =0,

ot 0

The initial condition (to be discussed later) will be written as

v(0, ) =g(-). (8

(In what follows, we replace all the gpatial variables by a point.)

2.2. Separation of Periodic Oscillations

Let us consider instead of Eq. (7) the equation

Jdu  du

g+a—t+F(u')=0, 9)

for s € [0, [ and ¢t € [0, <[ with the initial condition

u(@,t-)=nhis,-) (10)
where h(z, -) is a given ¢{-dependent field.

It is easy to see that if
h(0, -) = g(-)

and u is a solution of (9), (10) then

vit,-)=us ¢, ) (11)

is a solution of (7}, (8). (We set s = ¢.)
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The additional degree of freedom described by the variable
s can be used to impose an arbitrary r-dependence of u; the
initial condition (10) includes an initial guess of the t-behaviour,
In our case we shall set u periodic with a given period T as a
function of #
uls,t+ 7T, )=wust-). (12)
Accordingly, we shall assume the function i in (10) to be
periodic with the same period. From what has been said above
it is clear that, having solved Egs. (9), (10), this does not prevent
us to describe general nonperiodic solutions of Eqgs. (7), (8)
via Eq. (11). The variable s accounts for the deviation of the
time dependence of the solution v from the assumed pertodicity.
This simple procedure was already implemented directly [22]
for an unsteady flow with a given periodicity by discretizing
the time period by finite differences. Qur investigation of the
spectral decomposition of the cylinder wake [1] has, however,
indicated that a spectral Fourier representation of the time be-
haviour is much more accurate and efficient as only a very
small number of Fourier components appear to be relevant.

2.3. Fourier Decomposition of the Periodic Behaviour

The periodicity (12) of u(s, ¢, -) in the variable t makes it
possible to write u as a Fourier series,

+=

Uls, t,- )= 2, efs, e

n=—-=

(13)

where w = 27/7T. The developed solution being real, the coeffi-
cients (which are functions of s and the spatial variables) of
the development satisfy the relation:

cufs, - ) = co s, )

The Fourier decomposition (13) inserted into Egs. (9) and (5)
yields the following systemn of coupled equations:

ae, , <
E + (inw — V&), + Z B(c;, ¢, ) =0,
k=—m

(14)
In more detail, if we introduce the Fourier decomposition of
the pressure,

+o0

P,y = 2 dfs,)e™,

n=—mx

(15)
Eq. (14) can be written as

ac, ' L
a—‘; + (inw — Ve, + D (V) s+ Vd, =0, (16)
b=
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where ¢, satisfies the continuity equation

V-e,=0. (7}
As we have seen above the continuity equation is equivalent
to the second term of the RHS of Eq. (6).

Equations (15)—(17) require an initial condition representing
an inital guess of the behaviour over one period. The initial
condition can be determined by physical and/or numerical con-
siderations. In our case we shall test our method on the develop-
ment of the Bénard—Von Kdrman instability. The zeroth har-
monic represents the mean value of the flow. At the onset of
the instability it corresponds to the steady basic flow. The linear
{infinitesimal} instationnarity corresponds to the solution of the
linear instability problem. The linear theory yields harmonic
oscillations with a given frequency w and a given amplification
rate . The spatial dependence is defined by the (normalized)
unstable eigenfunction ¢ [1]. As a result a physical initial
condition consists in setting all but the first harmonic ¢, =
c_,l to zero, the first harmonic having the initial behaviour,

(18)

ci(s, ) o ae” ¢,

where a is a small factor determining the initial level of the
perturbation of the basic flow. (It appears that a fairly arbitrary
set of inital values of the Fourier components can be taken.
The advantage of the physically correct initial condition is to
reduce the numerical transients and to enable to follow the
development of the instability from much lower levels than
using classical direct solution methods.

The formulation presented in this section is strictly equivalent
to the initial Navier—Stokes formulation (1), (2). In particular,
even unperiodic flows, or flows having a period significantly
different from that chosen in Eq. (12), satisfy Eqs. (13) and (14),
the variable s accounting for the deviation from the assumed
periodicity. This property is important for flows with self-gener-
ated periodicity where the period is not known a priori as well
as for the treatment of transients. It enables us also to account
for frequencies varying in space. It is nevertheless obvious that
the accuracy and efficiency of the method will largely depend
on how well the periodicity assumption (12) is satisfied. In
what follows special attention will be paid to the optimization
of the choice of the period T so as to minimize the s-derivative
in Egs. (9) and (14). If this can be done the accuracy of the
time discretization becomes practically spectral.

3. NUMERICAL IMPLEMENTATION

3.1. Modification of the Time Marching Method

The numerical implementation of the proposed method was
based on a modification of a finite-volume time marching reso-
lution of the Navier—Stokes equations second-order accurate
in both space and time developed by Braza et al. [13, 23]. The
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second-order time discretization steps in the initial formulation
can be summed up as

Vv ]
(V' + V!
A + (V¥ V)Z(V vhH
- VVZ% (V' + V) + VP =0, (19)
Vip=V.V, (20)
Vitl = V' — Ve, (21
¢
= ply T
P P AL (22)

where (V, P) stands for the discrete version of (v, p) solution
of the continuous problem at the time t = /At

The time advancement in ¢ is now replaced by a time advance-
ment in 5. Applying the time discretization (19) to (22) for Egs.
(16), (17) we obtain for a first-order formulation,

Cm+l — Cm
— " + inC!
As
k=4
+ - ve (23)
k=—o
— VIO + VD =,
or a second-order formulation,
Cr:H —_ Cm ]
_—"+ : - m+l o (Cm
As e > o Cn
k=4 1
+ 2 AC- V) S (€ + Gy (24)
k=—m

- yVE% (Cpt' + € + VDt =0,

where C7 and D7 stand for the discrete version of ¢, and 4, at
the time s = m A s. To solve Eq. (23} or (24), together with

V.Crtl =0, (25)
we introduce the intermediate iteration procedure,
Cr—-c, Cr-C
Ah Ag
k=4 )
+ inCk + Y, (Ch-VICE, (26)
f=—m

— WVICF + VD) =0,
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or

Cy—C, Ci—Cp
+

Ah As
1 = i o
+ inmi (Cxr+Cnh+ Z (Ci'v)a(cf—k + CLp)
k=—oa

- vw%(c;k +Cr) + VDI =0, @7)
Vb, = V-Cf, (28)
Cit' =CF - Vb, (29)

_ D,
Dl =D 4 —. (30)

As

Equation (26) or (27) is discretized by a second-order finite
volume method in space and solved by an ADI method. Ak is
chosen to optimize the ADI algorithm. For each j-step, one
ADI sweep in both space directions is carried out in Eq. (26)
or (27) and Eq. (28) is solved by several iterations of an ADI
Laplace solver to obtain a divergenceless next approximation
by Eq. (29). The (j + D)th pressure correction is given by Eq.
(30). At convergence,

limC, = C;™',

Joro
we thus obtain the solution of Eg. (23) or (24).

3.2, Spatial Discretization

The spatial discretization is based on a finite-volume method
applied to the Navier—Stokes equations written in their conser-
vative form and integrated over an elementary volume [13, 23].
Primitive variables (i, v, p) are discretized on staggered meshes
to overcome the pressure checkerboard problem. A centered
discretization of the diffusion term yields a second-order space
accuracy. Dirichlet boundary conditions are applied at the inlet
as well as at the side walls and Neumann boundary conditions
dc,/dx = 0 at the outlet. The configuration and the boundary
conditions are presented in Fig. 1. The (102 X 32) point grid
used for the simulations is shown in Fig. 2.

3.3 Period Correction

We apply our method to an afterbody wake. The oscillations
of the wake being self-generated and their peried varying in
time, the accuracy is maximized by implementing a period
correction algorithm to adjust the instantaneous period value.
This can be done by minimizing the s-derivative which leads
to a practically spectral time accuracy.

The correction is based on the minimizing of the angular
velocity Aw of the fundamental harmonic of the v-velocity
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FIG. 1.

denoted V. (In what follows we denote by U,, V, the compo-
nents of each Fourrier mode ¢, = (U, V,}.) The phase variation
of the n = 1 Fourier component of the transverse velocity in
the complex plane is a measure of Aw defined as the difference
between the true value w, of the angular velocity and the approx-
imate one w = w, — Aw. As a result, at each s-iteration the
angular velocity correction can be calculated as

9m+l . am
Aw+‘Ti, (31)

87 being the argument of C, at time 5 = mAs. The value of
Aw calculated in Eq. (31) is used to update o, so that the value
® + Aw, instead of w, is used in Eq. (23) or (24) at the next
s-step.

4. NUMERICAL RESULTS

We have tested the presented method on the simulation of
ihe development of the Bénard—von Kérman instability in the
afterbody wake described in Section 3.2 near the instability
threshold. The Reynolds number is based on the bulk velocity
(U, = 1) and the width of the afterbody (I}, = }). The critical
Reynolds number has been found =~85 in this case and the
value Re = 90 has been retained for the flow simulation. The
length and velocity scales are nondimensionalised with respect
to the domain width L = 1 and the bulk velocity U, = 1, respec-
tively,

First, we have determined the influence of the time step on
the cost of the calculation and proved the existence of an
optimum. Second, we have tested the behaviour of the scheme

) dv/dx=0
u=u{y)
' i’

Dormnain of calculation and boundary conditions.

using a constant value for the angular velocity . Third, we
have introduced the angular velocity correction and proved its
efficiency. Finally, we have applied this scheme to the complete
simulation of the growth of the instability up to the saturation
by using an approximation with only three leading harmonics.

4.1. Optimisation of the CPU-Time

In order to optimize the method, it is interesting to search
for the time step As that minimizes the CPU-time. The estimates
are performed in the transient phase of the flow and, apart from
the mean flow, we keep only the first harmonic.

For each value of As considered here, one hundred internal
iterations (26) through (30} are carried out. Then the number
of internal iterations required for reaching a certain fixed accu-
racy is determined. The accuracy criterion is based on the ratio
between the residual &, of the conservation equation for C, and
[aC,/ds].

e/

aC, B
—| =107,
ds

We can thus determine the CPU-time necessary for simulat-
ing a given s-interval (0.4 time units in this case} with a fixed
accuracy from the CPU-time for a single time step in terms of
the number of internal iterations.

The results for our two different schemes are presented in
Fig. 3. The solid line corresponds to the second-erder accurate
scheme, the dashed one for the first-order accurate one. These
results prove the existence of an optimal As for each type of
scheme as well as the superiority of the second-order accurate
scheme from this point of view.

FIG. 2. (102 X 32) poiats grid used for the simulation.
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FIG. 3. CPU-time in terms of the number of internal iterations necessary
to simulate an s-interval of length 0.4 with a 10™* accuracy of the term aC,/
ds, depending on the time step As and the type of the scheme: first-order
accurate (dashed line); second-order accurate (solid line).

4.2, Transient Flow Simulated with a Standard Scheme

In this section, we present the simulation of the transients
with a standard second-order accurate finite difference time
marching scheme combined with finite volume space discretiza-
tion. Two steps have been tested Ar = 1072 and At = 107
{==1000 time steps per period). We recall that the results are
made dimensionless using the width L = 1 of the channel and
the bulk velocity U, = 1. The reference time is thus L/, = 1.

The results obtained with At = 1072 have proved that the
low time accuracy of this calculation has a large influence on
the behaviour of the transients. Indeed, the amplification rate
is twice as large as that obtained from the calculation with
Ar = 107% As a consequence, the critical Reynolds number
determined with Ar = 1077 is found to be as low as 76 and
the saturation value of the transverse velocity V is found to be
40 % larger than that obtained with At = 107,

The results of the calculation with Ar = 1077 are shown in
Figs. 4-6. Figure 4 shows the time evolution of the transverse
velocity V at the point {1.04, 0.0) on the axis of symmetry of
the domain. The envelope of this signal is presented (Fig. 5)
in cartesian and logarithmic coordinates to show the exponential
growth of V. The time evolution of the angular velocity w is
given in Fig. 6. We conclude that the instability characteristics
depend strongly on the accuracy of the time discretization. The
levels of the residuals obtained with Ar = 107 (>107%) are
indicative of a still unsufficient precision, however, the comput-
ing costs of a still finer time-resolution would have been prohib-
itive.

These results have to be compared to those obtained with
the spectral version of the code.

4.3. Flow at Saturation without Period Correction

The solution obtained at saturation with the standard time
marching scheme with Ar = 1072 is used to estimate the period
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0_3_.............L..........

0.2

140

FIG. 4. Time evolution of the transverse velocity V for the caleulation
with a standard time marching scheme.

of the flow and to calculate the Fourier coefficients for the initial
condition for the spectral code. The Fourter decomposition is
restricted to the harmonics 0, 1, and 2 and we chose the first-
order accurate s-scheme version for which the optimal value
of As was found to be =~0.1. In the following sections, U, and
V, are, respectively, the x and y-components of C,.

. i i 1 i
10 0 20 40 80 80
t

i i
100 120 140

FIG. 5. Time evolution of the envelope of the transverse velocity V for
the calculation with a standard time marching scheme.
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FIG. 6. Time evolution of the angular velocity  for the calculation with
a standard time marching scheme.

Because of the differences in the time discretization between
both methods, the value of the angular velocity w obtained
from the time marching calculation does no longer represent
the sataration value wg, of the angular velocity for the new
approximation. As a consequence, the Fourier components are
not steady. They reach a limit cycle at which the n = | Fourier
component rotates in a complex plane with the constant angular
velocity Aw = @y — w and evolves according to the follow-
ing relationship:

C(s, x) = [Cilx)le*.

Figures 7 and 8 represent the time evolution of the absolute
value of the x-component U, at the point (1.06, —0.017) and
of the y-component V| at the point (1.04, 0.0) on the axis of
symmetry. We first note that, indeed, a limit corresponding to
the saturation is reached. U, reaches a limit cycle represented
in the complex plane by a circle with radius |/, and character-
ized by the constant angular velocity Aw (Fig. 9).

Finally, in Fig. 10 we note that the residual g, of the conserva-
tion equation for U, can not be reduced under a certain limit
(3.107%) because of the non negligible value of dU/,/ds and of
the first-order accuracy of the s-time marching scheme. A better
accuracy is achieved by eliminating the s-variation of C, using
the angular velocity correction described below.

4.4. Angular Velocity Correction
for a Flow at Saturation

The conditions of this calculation are strictly the same as in
the previous section but the procedure to correct the angular
velocity is now introeduced into the scheme.

We first note, in Fig. 11, that the limit cycle disappears to
be replaced by a limit point in the complex plane due to the
the complex Fourier coefficient reaching a steady state. In the
same time, we observe, in Figs. 12 and 13, an exponential
decay for |98/,/ds| as well as for Aw. The residual g, of the
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FIG. 7. Time evelution of || and of U in the complex plane for the
calculation with constant angular velocity w.

conservation equation for I/ is now ten times smaller than in
the previous calculation with a constant angular velocity (see
Figs. 10 and 12).

Because Aw is now reduced to zero, the accuracy of the
solution does not depend anymore on As in the same way as
the accuracy of the solution of a steady flow does not depend
on At Then, the spectral time accuracy is reached and the
overall precision of the solution depends just on the number
of the calculated harmonics and on the space discretization, At
the convergence, the correct angular velocity wy, of the flow
is obtained as shown in Fig, 14,

4.5. Validation of the Method by Simulation of the
Transients of the Instability

4.5.1, Quantitative Results and Their Physical Consistence

The simulation of the saturation of the instability due to the
nonlinear effects is now performed with harmonics 0, 1, and
2 kept in the Fourier expansion (13). This low number of
harmenics taken into account was justified by the fact thai
acounting for higher harmonics was found to change the satura-
tion level of the fundamental by less than 0.1% (see Table I).
The initial condition is chosen such that its oscillation amplitude
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|dU1/ds| and residual
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5

FIG. 10. Time evolution of |aL/,/ds| (solid line) and of the residual &, of
the conservation equation for U, (dashed line) for the calculation with constant
angular velocity .

01

0.05 The angular velocity increases by a few percent to reach a

constant value at the saturation (Fig. 15). The linear relationship
between the angular velocity and |U;]* is obtained in agreement
with the theory [1, 8, 12] (Fig. 16). In the same way, this theory
also predicts a linear relationship between (8 |U/,|/9s)/|U)| and
|Uy|* that is obtained with good agreement (Fig. 17).

Imag{V1}
[=]

0 0.1 .
Real(V1) 0.06

FIG. 8. Time evolution of |V|| and of ¥, in the complex plane for the 0.055.
calculation with constant angular velocity w.

0.05

Uy

corresponds to 1078 of the expected saturation value for C,, C,
being set equal to zero as suggested in the Section 2.3. By 0.045
this mean, the numerical transients are short compared to the
physical ones and from the time 5 = 10, they do not contaminate 0.04
the solution anymore. As shown in the following figures, all

the characteristic aspects of transients are obtained and corre- 9035
spond to a Hopf bifurcation [1].

0.18

0.18f
0.14
2012
19 A O S

ook N A ,,,,,,,,,,

0.08 L ‘ ‘ ‘

; i ; i i _0.058 i ; i i
0 20 40 60 80 100 120 140 160 180 200 O'Qﬁ‘iﬂﬁ -6.018 -0.0t4 -0.013 -0.61 2 -0.011 1 -0.01
s Real{U1)
FIG. 9. Time evolution of Aw for the calculation with constant angular FIG. 1. Time evolution of |t/ and of {/, in the complex plane for the

velocity w. calculation with period corvection.
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|dU1/ds| and residual

FIG. 12. Time evolution of |a&/,/as| (solid line) and of the residual e,
(dashed iine) for the calculation with period correction.

{Uh] has first an exponential growth before reaching the satu-
ration shown in Fig. 18. Its saturation value is small because
the point (10.6, 0.483) is close to the axis of symmetry.

V|, observed at the point (10.4, 0.5), increases by four orders
of magnitude to reach finally its saturation value ==0.14. The
logarithmic coordinates put into light the exponential growth
of the instability. The slope of the linear part of the logarithmic
plot in Fig. 19 gives the amplification rate y = 0.0698.

The second harmonic U/, has qualitatively the same behaviour
as U}, except that it increases by eight orders of magnitude in
the same time interval (Fig. 20). This is in agreement with the
fact that its amplification rate should be 2y [11.

According to the theory [1], the nonlinear correction of the
mean value should have the same amplification rate 2y as the
second harmonic. To see this, we subtract the unperturbed flow
{the mean flow U, = 0.1742 before the development of the
instability). Indeed, Fig. 21 is in agreement with this theoreti-
cal result.

The relative numerical error on the angular velocity w (Fig.
22) is obtained by comparing Aw defined by the relation (31)
to w,, — ¢;, where oy is the initial value of the angular velocity
of the infinitesimal perturbation and ey, is its saturation value.

0 10 20 30 40 50 60 70 80
-]

FIG. 13. Time evolution of Ae for the calculation with period correction.

179

6.72

6.7 ........... brenen .............. ,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,
6.68

36.66

0 10 20 30 40 50 60 70

FIG. 14. Time evolution of « for the calculation with period correction.

This relative error does not exceed 0.4%. This accuracy is far
higher, compared to what has been obtained with standard
methods of analysis used in [1].

The residual £, of the conservation equation for U, remains
smaller than 2 X 107", The error on |84/,/ds| is then less than
0.01% as can be seen in Fig. 23. From the time s = 170, the
modulus of 4L/,/és decreases and its value at the time s = 250
is of the same order of magnitude as &, because saturation
is reached.

The value of |dU/,/as| is rather accurately equal to 8|U,|/és
as can be seen from

au, _8|u|

e;’Aws + IA(!) U ei;.\o.u'
Js ds | l‘

(32)

if we take into account the values of |aU/,/ds|, ||| and Aw
from Figs. 23, 18, and 22.

4.5.2. Comparisons with the Results of the Standard Time
Marching Scheme '

Comparisons have to be made with the results obtained with
the standard time marching scheme (STM scheme) with At =
10~ in Section 4.2. The results of the comparison are assembled
in Table I1. We first note that the amplification rate y = 0.077
is 10.3% higher than the amplification rate of V, obtained with
the spectral calculation. According to [6], ¥ should be linearly
dependent on the difference Re — Re, (Re, is the critical Reyn-

TABLE I

Comparisons of the Saturation Levels of the v-Velocity of the
Fundamental Harmonic for Varying Number j of Harmonics Taken
into Account

j t .2 3 4

LY D 5
|“I,u {‘?Jl I""’I.u

letfy — efiy ey

6.7010~*
5.55107*

1.171072
1.56107*

2.7010°F
1.6210°°

1.7910°¢
6.2310°7
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FIG. 15. Time evolution of the angular velocity w.
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(UL x10° FIG. 18. Time evolution of | /)| at the point (10.6, —0.017).

FIG. 16. Linear dependence of w on |U{.

olds number of the flow)., We thus deduce that the critical
Reynolds number obtained from the STM calculation is lower
than the spectral one. This is consistent with the saturation
value V,,,, = 0.3. According to the relation (13), the correspond-
ing Fourier coefficient is 0.15. This value is 7% higher than
the value of |V|} = 0.14 obtained from the spectral calculation.

0.06
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o
o

(iUt ids)/ U
s o
8 %

o
o
[~

0.01

FIG. 17.

Linear dependence of (3] U,|/as)/|{)| on |U3.

The standard time marching scheme with 100 time steps per
peried yielded a saturation amplitude of as much as 0.22. Alone
these three results indicate the obtained increase of the time
discretization accuracy.,

We performed an additional spectral calculation at the satura-
tion using six leading harmonics (0 through 5). We observe
that the saturation value for V| is unchanged and the saturation

TABLE 11

Comparison of the Computing Costs and of the Residuals of the
Standard Time-Marching Method and of the Present Spectral Time
Discretization Methed

STM scheme Spectral scheme Difference
Mesh 102 X 32 102 X 32 Identicat
Space discretization Finite volume Finite volume Identical
Amplification rate y 0.077 0.0698 10%
Saturation value [V 0.150 0.140 7%
W — @ 0.078 0.070 11%
Residual & 4 x 1073 2x 1077 20000
CPU-time (hours} 127 53 140%
Memory 4.5 Mo 6.7 Mo 49%
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FIG. 19. Time evolution of |V)| at the point (1.04, 0.0).

values for V; and Vs are respectively 2 X 1073 and 3 X 1073,
From this, we can conciude that the difference between the
saturation values of V for the STM scheme and V| for the
spectral scheme is not related to the number of harmonics taken
into account in the spectral calculation (see Table 1).

Because the mesh and the spatial discretization are the same
for both calculations, these differences have to be attributed 1o
the differences in the time discretization. It appears that despite
the small time step As = 107, the time accuracy of the STM
scheme is significantly lower than the time accuracy of the
spectral scheme. The residual of the u-equation for the STM
scheme is equal to 4 X 1073, i.e., 1% of the diffusion term
which is the smallest term of this equation. The equivalent
residual for the spectral scheme is less than 2 X 1077, i.e.,
2 X 10 times smaller than the STM residual.

The CPU-time required for the STM calculation on a Silicon
Graphics IRIS 4D/320 GTX computer was found to be 127 h
for a 140 time units duration, whereas it was only 53 h for
the spectral calculation. For the presented case, the required
memory is 4.5 Mo for the STM scheme and 6.7 Mo for the
speciral one. (We focussed rather to the improvement of the
accuracy than to the CPU-time reduction.)

002 T T !
0.015

0.01

2|

0.005

-10) : :

50 100 15 200 250
s

FIG. 20. Time evolution of the second harmonic |Uy-

5. CONCLUSIONS

We have not tried to present a complete well-balanced simu-
lation method with the same discretization accuracy, relative
to the time and space; neither have we taken into account a
sufficient number of harmonics. The point was to focus on the
time discretization method. The results show that it can be
made extremely accurate and efficient. For the presented case
of the unstable wake, it appeared that, in addition, the method
provides direct access for a number of characteristics of the
instability transients difficult to obtain by ordinary time
marching technigues such as the time evolution of the angu-
lar velocity.

In combination with a more accurate spatial discretization,
the method may become a useful numerical and theoretical tool
for the treatment of any instabilities presenting the characteris-
tics of the Hopf bifurcation such as those in wakes and jets,
on free surfaces and interfaces. The method is potentially appro-
priaie to any type of flow with a dominant periodicity.

The presented example of unstabie wake exploits the ability
of the method to separate slow and rapid time scales. Another
possiblity is presently under investigation. In periedic turbulent



0.04

0.02

Uop

s

FIG. 21. Time evolution of the perturbation U, of the mean flow.

wakes slow periodic oscillations of large scale vortices coexists
with a rapid motion of small scale turbulent structures. Standard
turbulence models aim at modelling the latter and at accounting
for the former by standard time marching schemes. This ap-
proach appears to be rather difficult (see Ref. [21]). The spectral
time discretization allows us to consider the problem from a
completely different viewpoint. The introduction of the Fourier
components reduces the unsteady problem to a steady formula-
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FIG. 22, Time evolution of the ratio Aw/(w,, — w)).
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FIG. 23. Time evolution of | aU,/s| (solid line) and of the residual &, of
the conservation equation for U, (dashed line).

tion for which turbulence modelling techniques analogous to
those for steady turbulent flows can be used and the transfer
of energy from the mean flow through the harmonics to the
turbulent structures can be taken into account explicitly.
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